Internal structure evidence of validity

Dr Wan Nor Arifin

Unit of Biostatistics and Research Methodology, Universiti Sains Malaysia. wnarifin@usm.my / wnarifin.github.io

Wan Nor Arifin, 2017. Internal structure evidence of validity by Wan Nor Arifin is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/.

Outlines

- 1. Measurement validity & reliability
- 2. Classical validity
- 3. The validity
- 4. Factor analysis
- 5. Reliability

1. Measurement validity & Reliability

- Measurement \rightarrow Process of observing & recording.
- Measurement validity \rightarrow Accuracy.
- Measurement reliability → Precision, consistency, repeatability.

2. Classical validity

3Cs:
1.<u>C</u>ontent
2.<u>C</u>riterion
3.<u>C</u>onstruct

3. The validity

- Unitary concept.
- Degree of evidence → Purpose & Intended use of a tool.
- Evidence from 5 sources: 1.Content.
 - 2.Internal structure.
 - 3.Relations to other variables
 - 4. Response process.
 - 5.Consequences.

The validity

- <u>Construct</u> Concept to be measured by a tool.
- Construct = Concept = Domain = Idea
- Internal structure evidence
 - How <u>relationship</u> between items & components reflect <u>construct</u>.
 - Analyses:
 - 1.Factor analysis
 - 2.Reliability

4. Factor Analysis

- Factoring
- Factor analysis

Factoring

- <u>Group</u> things that have <u>common</u> concept.
- <u>Simplify</u>.
- Factoring = Grouping = Simplify
- Factor \rightarrow Construct

Orange, motorcycle, bus, durian, banana, car

Anything in common?

Q Validation Workshop 2017

• Group them

Orange, durian, banana Motorcycle, bus, car

into 2 groups

Q Validation Workshop 2017

• Name the groups

Fruit	Motor vehicle
Orange	Motorcycle
Durian	Bus
Banana	Car

factor out the common concept.

Likert scale [Fruit] 1-2-3-4-5 [Motor Vehicle] → correlation matrix

Items	1	2	3	4	5	6
1. Orange	1.00					
2. Durian	.67	1.00				
3. Banana	.70	.81	1.00			
4. Motorcycle	.11	.08	.05	1.00		
5. Bus	.08	.12	.09	.75	1.00	
6. Car	.18	.12	.22	.89	.83	1.00
Q Validation Workshop 2017					12 / 27	

	Factors				
Items	Fruit	Motor vehicle			
1. Orange	Х	-			
2. Durian	X	-			
3. Banana	X	-			
4. Motorcycle	-	Х			
5. Bus	-	X			
6. Car	-	Х			

<u>Correlated</u> items → <u>Group</u>. More items? Impossible. $FA \rightarrow objective factoring$.

Q Validation Workshop 2017

FA

- Multivariate analysis >1 outcomes/DVs/Items.
- Numerical items, e.g. Likert scale, VAS scores, laboratory results etc.
- Cluster correlated items \rightarrow Factor.
- Factors <u>extracted</u> from items \rightarrow Latent (unobserved) IVs.
- RQs:
 - Number of factors?
 - Strength of Item-Factor correlation (factor loading)?
- <u>Recall</u> MLR: 1 DV many IVs (observed).

Classification

1. Exploratory FA/EFA

2. Confirmatory FA/CFA

- Exploratory analysis.
- Objectives: Explore & factor items, generate theory.
- Models:
 - -Full component model.
 - -<u>Common factor model</u>.

• Full component model

- Extraction method: Principal component analysis (PCA)
- Data reduction \rightarrow For other analysis.
- All variances \rightarrow Components.
- Error NOT considered.
- NOT the real FA!

Common factor model

- Extraction methods:
 - Classical: Principal axis analysis.
 - Other variants: Image analysis, alpha analysis, maximum likelihood (ML).
- Common + Error variances.
- The 'Real' FA.
- Main results:
 - Number of factors extracted.
 - Factor loadings.
 - Factor-factor correlations.

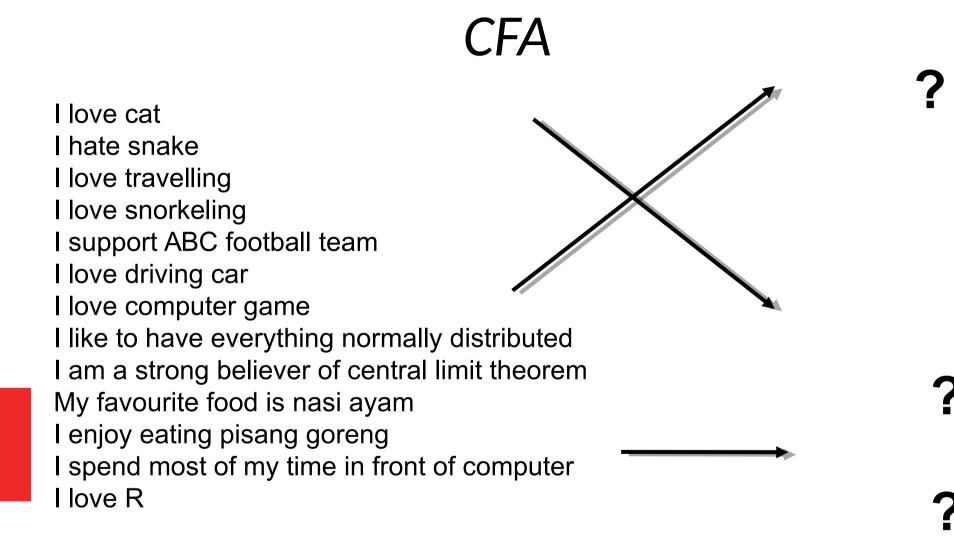
- To further simplify EFA results → Factor <u>Rotation</u>:
 Types:
 - Orthogonal method uncorrelated factors.
 - Varimax, Quartimax, Equamax
 - **Oblique method** correlated factors.
 - Promax, Direct Oblimin
- Obtain clear factors & factor loadings.

Classification

1. Exploratory FA/EFA 2. <u>Confirmatory FA/CFA</u>

CFA

- Confirmatory analysis.
- Common factor model.
- Structural Equation Modeling (SEM) analysis:
 - <u>Measurement model (CFA)</u>
 - Structural model (path analysis)
- Commonly ML estimation.
- Model fit assessment.


CFA

• For example, correlation between these items:

I love fast foodI hate vegetableI hate eating fruitsI hate exercise

Strong theoretical basis from EFA, theory, LR.

Correlation between items? No idea \rightarrow EFA

EFA vs CFA

	EFA	CFA			
	Exploratory	Confirmatory			
	No need theory	Theory		Theory	
	Explore to get theory	Confirm theory			
	Item not fixed to factor	Item fixed to factor			
	Rotation	No rotation			
	No Hx testing	Hx testing & model fit			
10/10/2017	O Validation Workshop 2017		/ 27		

5. Reliability

- Part of validity evidence.
- Types:
 - 1.Test-retest reliability
 - 2.Parallel-forms reliability
 - 3.Interrater reliability
 - 4. Internal consistency reliability

Internal consistency reliability

- <u>Consistent</u> responses in a construct.
- <u>Homogenous</u> $\rightarrow \uparrow$ Reliability.
- Heterogenous $\rightarrow \downarrow$ Reliability.
- Advantage: Measure 1x only.
- EFA: Cronbach's alpha coefficient.
- CFA: Raykov's rho
- Not reliable $0 \rightarrow 1$ Perfectly reliable.
- Aim > 0.7.

Thank You